- Siapkan komponen-komponen yang akan dirangkai sesuai percobaan
- Rangkai komponen pada breadboard
- Buka aplikasi Thonny IDE pada laptop
- Masukkan Listing program
- Hubungkan rangkaian breadboard dengan laptop
- Upload Listing program pada rangkaian
- Rangkaian sudah dapat dijalankan
#include "stm32f1xx_hal.h"
/* Global Variables */
ADC_HandleTypeDef hadc1;
TIM_HandleTypeDef htim2;
uint8_t sound_pattern = 0;
/* Pin Definitions */
#define LED_RED_PIN GPIO_PIN_12
#define LED_GREEN_PIN GPIO_PIN_13
#define LED_BLUE_PIN GPIO_PIN_14
#define LED_PORT GPIOB
#define BUTTON_PIN GPIO_PIN_0
#define BUTTON_PORT GPIOB
#define BUZZER_PIN GPIO_PIN_2 // TIM2_CH3 (PA2)
/* Threshold Values */
#define ADC_THRESH_HIGH 3000
#define ADC_THRESH_MID 1500
/* Frekuensi Buzzer - using uint32_t instead of uint16_t */
const uint32_t pwm_periods[] = {143999, 71999, 719999}; // 72MHz/freq - 1
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC1_Init(void);
static void MX_TIM2_Init(void);
void update_leds_and_buzzer(uint32_t adc_val, uint8_t btn_state); // Updated function signature
void change_sound_pattern(void);
void Error_Handler(void); // Explicit declaration
int main(void) {
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_ADC1_Init();
MX_TIM2_Init();
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_3);
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0);
HAL_ADC_Start(&hadc1);
while (1) {
static uint32_t last_adc_tick = 0;
static uint32_t last_sound_change = 0;
uint8_t button_state = HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN);
if (HAL_GetTick() - last_adc_tick > 200) {
last_adc_tick = HAL_GetTick();
HAL_ADC_Start(&hadc1);
if (HAL_ADC_PollForConversion(&hadc1, 10) == HAL_OK) {
update_leds_and_buzzer(HAL_ADC_GetValue(&hadc1), button_state);
}
}
if (button_state == GPIO_PIN_SET && (HAL_ADC_GetValue(&hadc1) < ADC_THRESH_MID)) {
if (HAL_GetTick() - last_sound_change > 1000) {
last_sound_change = HAL_GetTick();
change_sound_pattern();
}
}
HAL_Delay(10);
}
}
void update_leds_and_buzzer(uint32_t adc_val, uint8_t btn_state) {
HAL_GPIO_WritePin(LED_PORT, LED_RED_PIN|LED_GREEN_PIN|LED_BLUE_PIN, GPIO_PIN_RESET);
if (adc_val >= ADC_THRESH_HIGH) {
HAL_GPIO_WritePin(LED_PORT, LED_GREEN_PIN, GPIO_PIN_SET);
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0);
}
else if (adc_val >= ADC_THRESH_MID) {
HAL_GPIO_WritePin(LED_PORT, LED_BLUE_PIN, GPIO_PIN_SET);
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0);
}
else {
HAL_GPIO_WritePin(LED_PORT, LED_RED_PIN, GPIO_PIN_SET);
if (btn_state == GPIO_PIN_SET) {
__HAL_TIM_SET_AUTORELOAD(&htim2, pwm_periods[sound_pattern]);
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, pwm_periods[sound_pattern]/2);
} else {
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, 0);
}
}
}
void change_sound_pattern(void) {
sound_pattern = (sound_pattern + 1) % 3;
if (HAL_ADC_GetValue(&hadc1) < ADC_THRESH_MID &&
HAL_GPIO_ReadPin(BUTTON_PORT, BUTTON_PIN) == GPIO_PIN_SET) {
__HAL_TIM_SET_AUTORELOAD(&htim2, pwm_periods[sound_pattern]);
__HAL_TIM_SET_COMPARE(&htim2, TIM_CHANNEL_3, pwm_periods[sound_pattern]/2);
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV6;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_MasterConfigTypeDef sMasterConfig = {0};
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 0;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 65535;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_3) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
HAL_TIM_MspPostInit(&htim2);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
/* GPIO Initialization */
static void MX_GPIO_Init(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/* LED Outputs */
GPIO_InitStruct.Pin = LED_RED_PIN|LED_GREEN_PIN|LED_BLUE_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LED_PORT, &GPIO_InitStruct);
/* Button Input */
GPIO_InitStruct.Pin = BUTTON_PIN;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(BUTTON_PORT, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
7. Link Download [Kembali]
Tidak ada komentar:
Posting Komentar