Laporan Akhir 1

                                                         [KEMBALI KE MENU SEBELUMNYA]



1. Prosedur
 
[Kembali]




Percobaan 8 : LED RGB, Buzzer, Touch Sensor dan PIR

  1. Siapkan alat-alat yang diperlukan pada Wokwi Simulation atau perangkat keras nyata
  2. Hubungkan Sensor PIR:
  3. bVCC ke 5V
  4. GND ke GND STM32
  5. OUT ke GPIO PA0
  6. Hubungkan Sensor Sentuh (Touch Sensor):
  7. VCC ke 5V
  8. GND ke GND STM32
  9. OUT ke GPIO PA1
  10. Hubungkan LED RGB:
  11. Anoda LED Merah ke GPIO PB0 melalui resistor 110Ω
  12. Anoda LED Hijau ke GPIO PB1 melalui resistor 110Ω
  13. Anoda LED Biru ke GPIO PB2 melalui resistor 110Ω
  14. Katoda ke GND
  15. Hubungkan Buzzer:
  16. Salah satu kaki buzzer ke GND STM32
  17. Kaki lainnya ke GPIO PA5 melalui resistor 110Ω
  18. Hubungkan sensor PIR dan sensor sentuh ke sumber daya 3,3V atau 5V sesuai spesifikasi sensor
  19. Inputkan Listing Program ke STM32CubeIDE
  20. Jalankan (Running) program dan amati respon sensor serta keluaran LED dan Buzzer





2. Alat dan Bahan [Kembali]

  • raspberry pipico
komponen
  1. RP2040 (
  2. RAM 264 KB
  3. Flash 2 MB
  4. GPIO 26pin
  5. Masukan Analog 3x (ADC)
  6. Masukan/Keluaran Digital
  7. I²C, SPI, UART
  8. PWM (Modulasi Lebar Pulsa)
  9. PIO (Input/Output yang Dapat Diprogram)
  10. Port mikro USB
  11. Pengatur Tegangan 3.3V
  12. VBUS dan VSYS (Input Daya)
  13. SWD (Debugging Kabel Serial)
  14. Tombol Bootsel
  • PIR SENSOR

Komponen

  1. Pyroelectric Sensor
  2. Amplifier
  3. Lensa Fresnel
  4. OP-AMP
  5. IC kontrol
  6. Potensiometer
  7. Regulator Tegangan
  8. Kapasitor dan Resistor
  9. Pin Output,VCC,GND
  • Diagram Blok
3. Rangkaian Simulasi [Kembali]






4. Prinsip Kerja Rangkaian & Listing Code [Kembali]

Pada rangkaian tersebut, modul sensor PIR dan sensor sentuh (touch) masing-masing dihubungkan sebagai input ke pin GPIO mikrokontroler STM32F103C8, sedangkan tiga LED (merah, hijau, dan biru) serta buzzer dihubungkan sebagai output pada pin GPIO lainnya. Di dalam kode, mikrokontroler secara terus-menerus membaca status pin PIR dan pin touch: jika sensor PIR  mendeteksi gerakan (membaca nilai SET)  maka mikrokontroler akan mengaktifkan pin Merah , serta membuat buzzer berbunyi; kemudian, jika kondisi sensor sentuh mendeteksi sentuhan (membaca nilai SET), maka mikrokontroler akan mengaktifkan pin Hijau, serta membuat buzzer berbunyi; 

Listing Code:

/* USER CODE BEGIN Header */

/**

  ******************************************************************************

  * @file           : main.c

  * @brief          : Main program body

  ******************************************************************************

  * @attention

  *

  * Copyright (c) 2025 STMicroelectronics.

  * All rights reserved.

  *

  * This software is licensed under terms that can be found in the LICENSE file

  * in the root directory of this software component.

  * If no LICENSE file comes with this software, it is provided AS-IS.

  *

  ******************************************************************************

  */

/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/

#include "main.h"

 

/* Private includes ----------------------------------------------------------*/

/* USER CODE BEGIN Includes */

 

/* USER CODE END Includes */

 

/* Private typedef -----------------------------------------------------------*/

/* USER CODE BEGIN PTD */

 

/* USER CODE END PTD */

 

/* Private define ------------------------------------------------------------*/

/* USER CODE BEGIN PD */

 

/* USER CODE END PD */

 

/* Private macro -------------------------------------------------------------*/

/* USER CODE BEGIN PM */

 

/* USER CODE END PM */

 

/* Private variables ---------------------------------------------------------*/

 

/* USER CODE BEGIN PV */

 

/* USER CODE END PV */

 

/* Private function prototypes -----------------------------------------------*/

void SystemClock_Config(void);

static void MX_GPIO_Init(void);

/* USER CODE BEGIN PFP */

 

/* USER CODE END PFP */

 

/* Private user code ---------------------------------------------------------*/

/* USER CODE BEGIN 0 */

 

/* USER CODE END 0 */

 

/**

  * @brief  The application entry point.

  * @retval int

  */

int main(void)

{

 

  /* USER CODE BEGIN 1 */

 

  /* USER CODE END 1 */

 

  /* MCU Configuration--------------------------------------------------------*/

 

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */

  HAL_Init();

 

  /* USER CODE BEGIN Init */

 

  /* USER CODE END Init */

 

  /* Configure the system clock */

  SystemClock_Config();

 

  /* USER CODE BEGIN SysInit */

 

  /* USER CODE END SysInit */

 

  /* Initialize all configured peripherals */

  MX_GPIO_Init();

  /* USER CODE BEGIN 2 */

 

  /* USER CODE END 2 */

 

  /* Infinite loop */

  /* USER CODE BEGIN WHILE */

  while (1)

  {

    /* USER CODE END WHILE */

 

    /* USER CODE BEGIN 3 */

  }

  /* USER CODE END 3 */

}

 

/**

  * @brief System Clock Configuration

  * @retval None

  */

void SystemClock_Config(void)

{

  RCC_OscInitTypeDef RCC_OscInitStruct = {0};

  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

 

  /** Initializes the RCC Oscillators according to the specified parameters

  * in the RCC_OscInitTypeDef structure.

  */

  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;

  RCC_OscInitStruct.HSIState = RCC_HSI_ON;

  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;

  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;

  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)

  {

    Error_Handler();

  }

 

  /** Initializes the CPU, AHB and APB buses clocks

  */

  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK

                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;

  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;

  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

 

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)

  {

    Error_Handler();

  }

}

 

/**

  * @brief GPIO Initialization Function

  * @param None

  * @retval None

  */

static void MX_GPIO_Init(void)

{

  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* USER CODE BEGIN MX_GPIO_Init_1 */

 

  /* USER CODE END MX_GPIO_Init_1 */

 

  /* GPIO Ports Clock Enable */

  __HAL_RCC_GPIOD_CLK_ENABLE();

  __HAL_RCC_GPIOA_CLK_ENABLE();

  __HAL_RCC_GPIOB_CLK_ENABLE();

 

  /*Configure GPIO pin Output Level */

  HAL_GPIO_WritePin(GPIOA, RED_Pin|GREEN_Pin, GPIO_PIN_RESET);

 

  /*Configure GPIO pin Output Level */

  HAL_GPIO_WritePin(BLUE_GPIO_Port, BLUE_Pin, GPIO_PIN_RESET);

 

  /*Configure GPIO pins : RED_Pin GREEN_Pin */

  GPIO_InitStruct.Pin = RED_Pin|GREEN_Pin;

  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

  GPIO_InitStruct.Pull = GPIO_NOPULL;

  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

 

  /*Configure GPIO pin : BLUE_Pin */

  GPIO_InitStruct.Pin = BLUE_Pin;

  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;

  GPIO_InitStruct.Pull = GPIO_NOPULL;

  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;

  HAL_GPIO_Init(BLUE_GPIO_Port, &GPIO_InitStruct);

 

  /*Configure GPIO pins : PIR_Pin TOUCH_Pin */

  GPIO_InitStruct.Pin = PIR_Pin|TOUCH_Pin;

  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;

  GPIO_InitStruct.Pull = GPIO_NOPULL;

  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

 

  /*Configure GPIO pin : BUZZER_Pin */

  GPIO_InitStruct.Pin = BUZZER_Pin;

  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;

  GPIO_InitStruct.Pull = GPIO_NOPULL;

  HAL_GPIO_Init(BUZZER_GPIO_Port, &GPIO_InitStruct);

 

  /* USER CODE BEGIN MX_GPIO_Init_2 */

 

  /* USER CODE END MX_GPIO_Init_2 */

}

 

/* USER CODE BEGIN 4 */

 

/* USER CODE END 4 */

 

/**

  * @brief  This function is executed in case of error occurrence.

  * @retval None

  */

void Error_Handler(void)

{

  /* USER CODE BEGIN Error_Handler_Debug */

  /* User can add his own implementation to report the HAL error return state */

  __disable_irq();

  while (1)

  {

  }

  /* USER CODE END Error_Handler_Debug */

}

 

#ifdef  USE_FULL_ASSERT

/**

  * @brief  Reports the name of the source file and the source line number

  *         where the assert_param error has occurred.

  * @param  file: pointer to the source file name

  * @param  line: assert_param error line source number

  * @retval None

  */

void assert_failed(uint8_t *file, uint32_t line)

{

  /* USER CODE BEGIN 6 */

  /* User can add his own implementation to report the file name and line number,

     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

  /* USER CODE END 6 */

}

#endif /* USE_FULL_ASSERT */




5. Video Rangkaian [Kembali]









6. Analisa 
[Kembali]













7. Link Download [Kembali]

Video Simulasi klik disini

Tidak ada komentar:

Posting Komentar

Tugas Pendahuluan

[KEMBALI KE MENU SEBELUMNYA] DAFTAR ISI 1.Kondisi 2. Gambar Rangkaian Simulasi 3. Prinsip Kerja 4. Download File 1. Soal [...